1.	Freon	s are mixed	· - .						
	A)	Chlorofluoro			B)		ochlorocarbons		
	C)	Bromofluoro	carbons		D)	Chlore	oiodocarbons		
2.	d	loes not exist.							
	A)	ClF ₃			B)	BrF_3			
	C)	IF ₃			D)	ICl_3			
3.	is	s used as an ane	esthetic.						
	A)	N_2O			B)	N_2O_3			
	C)	N_2O_4			D)	N_2O_5			
4.	Carbo	orundum is	carbide	3 .					
	A)	boron			B)	silicor	1		
	C)	calcium			D)	zircon	ium		
5.	is	s diamagnetic.							
	A)	O_2	B)	${\rm O_2}^+$		C)	${\rm O_2}^{\scriptscriptstyle ++}$	D)	O_2
6	Thora			- i					
6.		ctinium series is			`	C	(4n±2)	D)	(4n±2)
	A)	4n	B)	(4n+1))	C)	(4n+2)	D)	(4n+3)
7.	How	many d electror	ns are p	resent ir	n Cr of p	ootassiu	ım dichromate?	•	
	A)	0	B)	5		C)	6	D)	7
8.	7r ⁴⁺ a	and occur to	ngether	in natur	·e				
0.	A)	Ti ⁴⁺	B)	Hf ⁴⁺		C)	Sn^{4+}	D)	Pb^{4+}
			,			<i>-</i>)		2)	10
9.		s the most stable			e of U.				
	A)	+3	B)	+4		C)	+5	D)	+6
10.	c	omplexes are u	sed as 1						
	A)	La ³⁺	B)	Gd^{3+}	_	C)	Lu ³⁺	D)	Ac^{3+}
11.	a	are least prone to	o comp	lex form	nation a	mong th	ne following.		
	A)	Lanthanides	1		B)	Actini			
	C)	3d transition	metals		D)	4d tra	nsition metals		
12.	h	nas the maximu	n value	e of mag	netic m	oment a	at room tempera	ature	
12.	A)	Eu ³⁺	B)	Gd^{3+}	110010 111	C)	Tb ³⁺	D)	Dy^{3+}
12	A ~C1	ia aolublo in on	monis	dua ta t	ha farre	otion a	£.		
13.	_	is soluble in an $[Ag(NH_3)_2]^{2+}$		uue to t			1		
	A) C)	$[Ag(NH_3)_2]$ $[Ag(NH_3)_4]^{2+}$			D)	[Ag(N			
	C)	$IAg(NH_3)_4 ^{2}$			D)	TAg(N	l H ₂)₁ l ˙		

14.		somerism is ex	hibited	by [Co(_			
	A) C)	Ionisation Coordination			B) D)	Linka Polyr	nge nerisation		
					,	,			
15.		c ₄ .2H ₂ O is	magnet	tic at roo	om tem B)	-	e.		
	A) C)	ferro			D)	para ferri			
1.6		11							
16.		s optically active Cis [Co(NH ₃)			B)	Trans	s [Co(NH ₃) ₄ C	`l _a]+	
	C)	Cis $[Co(en)_2C]$	$[l_2]^+$		D)		$S [Co(en)_2Cl_2]$		
17.	Tho	lectronic spectr	um of [Cr(H.O) .1 ³⁺ ah	OWG	absorption	nooks	
1/.	A)	1	սուօւլ	Сі(п2О)6] Sil	2	absorption	peaks.	
	C)	3			/	4			
18.	The n	ale pink colour	of [Mn	(H ₂ O) ₂]	²⁺ is du	ie to			
10.	A)	spin orbit cou		(1120)6]	B)		nic coupling		
	C)	CT transition			Ď)		of above		
19.	i	s tetragonal.							
17.	A)	$[Fe(H_2O)_6]^{2+}$ $[Ni(H_2O)_6]^{2+}$			B)	[Co(H	$(A_2O)_6]^{2+}$ $(A_2O)_6]^{2+}$		
	C)	[Ni(H2O)6]2+			D)	[CuH	$({}_{2}\mathrm{O})_{6}]^{2+}$		
20.	d	loes not satisfy	the 18-	electron	rule				
	A)	•			B)	Mn(C	CO) ₅		
	C)	$Ni(PF_3)_4$			D)	Fe(Co	$O)_4PPh_3$		
21.	Trans	-ML ₂ (CO) ₄ [wł	nere L=	$(C_2H_5)_3$	P]sho	ws	CO stretchin	ng IR band	d/s.
	A)	1	B)	2	•	C)	3	D)	4
22.	The n	umber of unpai	red elec	etrone ni	recent i	n Cn ₂ C	0 is		
22.	A)	0		1	i esent i	C)	2	D)	3
22	TT1	. 1	., .	ъ.					
23.	The mA)	netal present in Fe	vitamir B)	1 B ₁₂ 1s - Co		C)	Ni	D)	Cu
	11)	10	D)	Co		C)	111	D)	Cu
24.		doxins contain -				<i>(</i> 1)	Г. С	D)	F (1
	A)	Fe-N	B)	Fe-O		C)	Fe-S	D)	Fe-Cl
25.	is	s the most abun	dant m		ne earth	n's crust	t.		
	A)	Fe	B)	Ca		C)	Al	D)	Mg
26.	The ca	arbon content is	s lowes	t in					
	A)	Pig iron			B)	Mild			
	C)	Medium steel			D)	Tool	steel		

27.	The W	Vacker process	is used	for the s	synthes	is of	 .		
	A)	Ethylene			B)	Aceto			
	C)	Acetaldehyde			D)	Metha	inol		
28.	Zeigle	er Natta catalyst	ic 11000	d for the					
20.	A)	Oxo process	1 18 USC	1 101 1116	B)	Monse	ato actic acid pr	rocess	
	C)	Polymerizatio	n of all	kenes	D)		-gas shift react		
	σ,	1 01/1110111101010			2)	,,,,,,,,,,	Sus sille remen		
29.	Zone	refining is not u	ised for	the pur	ificatio	n of			
	A)	Ga	B)	Si		C)	Ge	D)	Sn
20	D 41.1		1	1.6.	C	11	. 1 . 0		
30.		Frenkel and Sch	-		re toun		-		E ₂ C
	A)	NaCl	B)	AgCl		C)	AgBr	D)	FeS
31.	How 1	many Cl ⁻ ions s	urround	l each C	s ⁺ ion i	n CsCl	lattice?		
01.	A)	3	B)	4	0 1011 1	C)	6	D)	8
	,		,			,		,	
32.		not present in							
	A)	Rutile	B)	Anatas	se	C)	Monazite	D)	Ilmenite
22	Calida	, containing E o	antras	0.40					
33.	A)	containing F-c Dia	B)	are Para		C)	Ferro	D)	Ferri
	A)	Dia	D)	1 al a		C)	reno	D)	TCIII
34.	An n-	type semicondu	ctor is	obtained	d by do	ping Ge	with		
	A)	Ga	B)	In	<i>.</i>	C)	As	D)	Si
35.		the pyroelectr				C \	11.0		7.0
	A)	MnO	B)	FeO		C)	NiO	D)	ZnO
36.	Ном 1	many significan	nt figure	es are the	ere in tl	he numb	per 0.50 v 10 ³		
50.	A)	2	B)	3	cic iii ti	C)	5	D)	6
	11)	2	D)	5		C)		D)	O
37.	Random	n error is							
	A)	Always zero							
	B)	Always positi							
	C)	Always negat							
	D)	Sometimes po	ositive a	and som	etimes	negative	e		
38.	Thon	H at the equiva	langa n	oint for	the titr	ention of	e strong gold v	with a	wook boso
56.	is	-	ленее р	onit ioi	the thi	ation of	a strong actu v	viiii a	weak base
	A)	7			B)	> 7			
	C)	< 7			D)		of above		
					•				
39.		O ₄ serves as its	own in	dicator o				tion.	
	A)	acidic			B)	neutra		1:	
	C)	alkaline			D)	both n	eutral and alka	iine	

40.		orecipitating tion of	agent	dimethyl	glyoxim	e is	not	used	for	the	gravimetric
	A)	Ca ²⁺	B)	Ni^{2+}		C)	Po	\mathbf{l}^{2+}		D)	Pt ²⁺
41.	Which A) C)	among the f Pyrrole Pyrimidine	ollowin	g compou	and is m B) D)	ost are Pyric Thio	line				
42.	The hy A)	ybridization s sp ³	state of B)	the triple l sp	bonded	carboi C)	ns in sp		ne is	D)	nil
43.	Which A) C)	of the follow Phenyl Ethyl	ving car	bocations	s is least B) D)	stable Benz Isopr	zyl				
44.	Which A) C)	among the f Acetaldehy Formaldehy	de	g will und	dergo Ca B) D)		ylace	eactio etaldel			
45.	Ethyl 1 A) C)	magnesium b Ethyl alcoh Isopropyl al	ol	on treatm	nent witl B) D)		yl alc	cohol	y hy	droly	rsis gives
46.	The eA)	lectrophile in †CHO :CCl ₂	ivolved	in Riemer	B)	ann rea CH ₂ (O_{+}	n is	· .		
47.	In the	following co	mpounc	the abso	lute con	ifigura	ition	of C ₂ a	ınd C	C ₃ are	
		CC 1 2HN ² C 1 H ³ C 1	ОН								
	A)	2S,3R	B)	2R,3S		C)	28	S,3S		D)	2R,3R
48.	Which A) B) C) D)	of the follow Cis-1,3-dim Trans-1,3-d Cis-1,4-dim Trans-1,4-d	ethylcy imethyl ethylcy	clohexane cyclohexa clohexane	e ane	inacti	ve?				

49.	What	is the major pr	oduct o	f the fol	lowing	reaction	n?		
		O 	1	NaBH₄					
		CH_3 - \ddot{C} - CH_2 -	$CH_3 - C$	NaBH ₄ CH ₃ OH					
	A)	S-2-Butanol		_					
	B)	R-2-Butanol							
	C)	Racemic mix							
	D)	2-hydroxy-2-	methox	kybutane	;				
50.	-	ohotochemical ne is called		-	ition o	f a cart	onyl with an	olefin to	o give an
	A)	Barton			B)	Norri	sh type I		
	C)	Norrish type	II		D)		no-Buchi		
51.	-	hotochemical c	convers	ion of 1,	4-penta	adiene to	o vinyl cyclop	ropane is	s called
	A)	Di-pi-methan	ne		B)	Fries			
	C)	Claisen			D)	Wagn	er-Merwein		
52.	The D A) B) C) D)	iels-Alder reac Stereospecifi Stereoselectiv Stereospecifi Stereospecifi	c, regio ve, oreg c, regio	specific giospecif selective	fic and e	endosel xoselect	ective tive		
53.	The C	Cope rearranger	ment is	an exam	ple of s	sigmatro	pic reaction v	with the o	order
	A)	(1,3)	B)	(1,5)		C)	(3,3)	D)	(3,5)
54.	The n	umber of proch	niral car	ntare in 1	l 3 dibi	omonro	mana is		
J - T.	A)	0	B)	1	1,5-4101	C)	2	D)	3
	11)	Ü	D)	1		C)	-	D)	J
55.	Whic	h of the followi	ing tran	sition is	most ii	ntense ii	n carbonyl coi	npounds	?
	A)	$\sigma \rightarrow \sigma^*$	B)	$\pi \to \pi$	*	C)	$n \rightarrow \sigma^*$	D)	$n{\longrightarrow}~\pi^*$
56.	The nA)	umber signals o	observe B)	ed in the	¹ H NM	IR spect C)	rum of ethyl a	acetate is D)	 4
57.	Cellu	lose is a polym	er of						
	A)	α-D-glucose			B)	β- D-	glucose		
	Ć)	β- D-galactos	se		D)		gulose		
58.		IA the nucleosi	ide unit	s are linl	_	-			
	A)	amide			B)		hodiester		
	C)	glycosidic			D)	disulf	ıae		

59.	Which among the following compounds will not undergo cleavage with periodic acid?									
	A)	Glycerol	B)	Glucose						
	C)	•	D)	Glyceraldehyde.						
60.	Whic	ch among the following	is a purine base	e?						
	A)	Thymine	B)	Cytosine						
	C)	Guanine	D)	Uracil						
61.		densation of a diester in vn as condensation		f a base to give a cyclic β-ketoester is						
	A)	Aldol	B)	Perkin						
	C)	Claisen	D)	Dieckmann						
62.	The t	following reaction is an	example of	-condensation reaction.						
	R	N R NH R 2	$R \longrightarrow R$	_M N						
		2	3	A 1 *						
	A)	Perkin	B)	Acyloin						
	C)	Benzoin	D)	Thorpe						
63.	The multi-component condensation of a nonenolizable aldehyde, a primary or secondary amine and an enolizable carbonyl compound to afford β -dialkylaminocarbonyl compound is called reaction.									
	A)	-	,	MPV						
	C)	Mannich	D)	Stork enamine						
64.		During the structure elucidation of alkaloids the number of methoxyl groups present is estimated by method.								
	A)	Kuhn-Roth	B)	Hofmann						
	C)	Herzig-Meyer	D)	Zeisel						
65.	Quin	ine belongs to clas	ss of alkaloids.							
	A)	pyridine	B)	tropane						
	C)	isoquinoline	D)	quinoline						
66.	Chol	esterol is a lipid.								
	A)	simple	B)	compound						
	C)	derived	D)	glyco						
67.	Cam	phor is obtained from i	soborneol by	 .						
	A)	Oxidation	B)	Reduction						
	C)	Hydrolysis	D)	Dehydration						

68.	Biotin	is							
	A)	Vitamin A	B)	Vitamin B ₅					
	C)	Vitamin B ₃	D)	Vitamin H					
69.	Edmar	n reagent is							
	A)	Phenylisocyanate	B)	Phenylthiocyanate					
	C)	Phenylisothiocyanate	D)	1-fluoro-2,4-dinitrobenzene					
70.		ost acidic proton in the follow ³ CH ₂ - ² CH ₂ - ¹ CHO	ing con	npound is attached to carbon					
	A)	1	B)	2					
	C)	3	D)	4					
71.	Tropil	ium cation is							
	A)	Antiaromatic	B)	Homoaromatic					
	C)	Heteroaromatic	D)	Nonaromatic					
72.		of the following bond has hig							
	A)	С-Н	B)	C-C					
	C)	C-N	D)	C-O					
73.		orrect order for the basic featur		<u>.</u>					
	A) Acceleration, deflection, detection, ionisation D) Largeston, acceleration, deflection, detection								
	B)								
	C)								
	D)	Acceleration, deflection, ioni	sation,	detection					
74.	Which of the following substrates will have maximum rate for hydrolysis under								
		eaction conditions?							
	A)	Ethyl chloride							
	B)	Chlorobenzene							
	C)	Methyl chloride							
	D)	Benzyl chloride							
75		fect of chain transfer reagents							
	A)	Increase the average degree of		nerization					
	B)	Increase the rate of polymeris							
	C)	Reduce average degree of po		zation					
	D)	Reduce the rate of polymeris	ation						
76.		ic polymerisation "living polyn		formed when					
	A)	Propagation reactions do not							
	B)	Termination reactions do not							
	C)	Initiation reactions occur fast		termination reactions					
	D)	Amino acids are used as mor	omers						

77.	During A) B) C) D)	Monomer mo Monomer bre Monomer bre	step growth polymerisation Ionomer molecules are still present in the final polymer Ionomer breaks down to form free radicals Ionomer breaks down to form ions Ionomer disappears early in the reaction									
78.	Which A) B) C) D)	of the following R _f value of ind Components so Stationary and Nonpolar eluc	dividual soluble i d mobile	l compo in water e phases	nents care use	an be ca ed.		e techniq	ues?			
79.		of the followatogram?	ing is tl	he most	suitab	le gas t	o use as a ca	rrier gas	in a gas			
	A)	Methane			B)	Carbo	n dioxide					
	C)	Helium			D)	Oxyge	en					
80.	Gel ele A) C)	ectrophoresis se Molecular size Solubility	-	s DNA f	ragmen B) D)	Polari						
81.	Accord A) B) C) D)	Directly proportional to its energy Directly proportional to its momentum										
82.		among the folcal speeds?	lowing	will hav	e maxi	mum w	ave character	if they m	ove with			
	A)	Electrons			B)) Protons						
	C)	Neutrons			Ď)		particles					
83.	The er A) C)	nergy of a partic nh²/8ma² n²h²/4ma²	cle in a	one-din	nensiona B) D)	al box i n ² h ² /8 nh ² /4r	ma ²	· - .				
84.	The nu A)	umber of radial	nodes f	for the 3	s orbita	of hyo	drogen atom	is D)	3			
85.	The gr A)	round state term	n symbo B)	ol of Ni ² ³ F ₄	⁺ is	 C)	$^{3}\mathrm{D}_{2}$	D)	$^{3}\mathrm{D}_{4}$			
86.	What :	is the bond order	er of NO B))? 2		C)	2.5	D)	3			

87.	The hybridiz A) sp	ation of carbon B)	atom in gr	raphite is C)	 sp ³	D)	p^3s
88.	The angle be A) 60	tween the three B)	e iodine ato 90	oms of I ³⁻ io	on is 120	D)	180
89.	BF ₃ belongs A) C _{3v}	to point gr B)	roup. C _{4v}	C)	$\mathrm{D}_{3\mathrm{h}}$	D)	D_{4h}
90.	Molecules po	ossessing dipol B)	e moments C _s	do not bel	ong to the C_{nv}	point group)	up. C _{nh}
91.	Among X-ray A) X-ray C) UV	ys, UV, IR and	E	B) IR	has longest	wavelength?	
92.	Which amon A) H ₂ O	g the following B)	g is a spher C ₆ H ₆	ical top mo C)	olecule? CH ₄	D)	CH ₃ Cl
93.	A) It sho B) It sho C) It sho	n rule for a molould have a periould have a periould have a cha	manent dip manent pol nge in dipo	ole momer arisability de moment	nt	liation	
94.	-	ense colour of p * B)	permangana n→ σ*			ion. D)	$\pi \rightarrow \pi^*$
95.	The free radi	cals can be stu B)	died by UV	spectroso C)	copy. NMR	D)	ESR
96.	A) (2RT	bable speed of $(7/M)^{1/2}$ $(7/\pi M)^{1/2}$	E	(3R)	ren by T/M) ^{1/2} $T/\pi M$) ^{1/2}		
97.	A) DirectB) InverC) Indep	iffusion of a gastly proportions sely proportion tendent of its resely proportion	al to its mol nal to its mo nolecular v	olecular we veight	_		
98.	A) Avera B) Avera C) Path of	ath may be defined age distance becage intermolected from the maximum from	tween two ular space l ee energy c	successive between me hange		f a molecule	

99.	Two solutions of identical osmotic pressure are said to be								
	A)	Isonormal	B)	Isobaric					
	C)	Isotonic	D)	Equinormal					
100.	The to	erm 'mesophase' is associate	ed with	crystals.					
	A)	metallic	B)	covalent					
	C)	liquid	D)	molecular					
101.	Spont A) B) C) D)	Increase of G and decrease Increase of S and decrease Increases of both G and S Decreases of both G and S	e of S of G	py					
102.	The d	ifferential of is inexact.							
	A)	G	B)	U					
	Ć)	W	D)	S					
103.	At 0K	the entropy of CO is							
	A)	zero	B)	> zero					
	C)	< zero	D)	None of above					
104.	What is the influence of temperature (T) on the equilibrium constant (K) of a reaction? A) K increases with T B) K decreases when T is raised C) K is independent of T D) K increases with T only if the reaction is endothermic								
105.		anonical ensemble partition molecule partition function		on (Q) for an ideal gas is related to the					
	A)	$Q = q^N / N$	B)	$Q = N^q / N!$					
				$Q = N! / q^N$					
106.		s not a fermion.	,						
100.	A)	Electron B) Prot	on	C) Neutron D) ⁴ He					
	11)	Dicetion D) 1100	.011	c) Reation B) The					
107.		· · · · · · · · · · · · · · · · · · ·		teentration is 2.0 M. After one minute the constant for the reaction is 0.034 M ⁻¹ S 0.017M ⁻¹ S					
108.	i	s not a kinetic parameter.							
	A)	Zero point energy	B)	Activation energy					
	C)	Entropy of activation	D)	Pre-exponential factor					

109.	The Lindemann-Hinshelwood mechanism is used to explain reaction.										
	A)	unimolecular			B)	bimo	lecular				
	C)	trimolecular			D)	tetran	nolecular				
110.	The t	emperature depe	endence	e of reac	tion rat			the e	quation.		
	A)	Arrhenius			B)	Clape	•				
	C)	Eyring			D)	Deby	e				
111.	BET	equation represe	ents	adsorp	otion.						
	A)	monolayer			B)	doubl	e layer				
	C)	triple layer			D)	multi	layer				
112.	For tl	ne aqueous solut	ion-air	interfac	e i	is a cap	illary inactiv	e solute.			
	A)	acetone			B)	diethy	yl ether				
	C)	ethyl acetate			D)	glyce	rine				
113.	The s	cattering of ligh	t by co	lloidal p	articles	s is kno	wn as e	ffect			
	A)	Cotton	-	•	B)	Tynda					
	C)	Raman			D)	Rayle	eigh				
114.	j	s used to study t	he stru	cture of	surface	es.					
	A)	Mass Spectros	scopy		B)	Scann	ning Tunneli	ng Micros	сору		
	C)	Mossbauer Sp	ectros	сору	D)		n Spectrosco	_			
115.	A cat	alyst speeds up a	a reacti	ion by	·						
	A)	Increasing the	equilil	brium co	onstant						
	B)	Decreasing the	e equil	ibrium c	constan	t					
	C)	Increasing the	free e	nergy of	activat	ion					
	D)	Decreasing the	e free e	energy o	f activa	ition					
116.	The r	nolar conductan	ce of a	n electro	olyte is						
	A)	Maximum at i	infinite	dilution	1 B)	Minir	num at infin	ite dilutio	n		
	C)	Independent of	of diluti	ion	D)	Indep	endent of te	mperature			
117.	The i	onic strength of	one mo	olal solu	tion of	FeSO ₄	is				
	A)	1	B)	2		C)	4	D)	8		
118.	i	s used for makir	ng salt	bridge.							
	A)	NaCl	B)	KC1		C)	NaBr	D)	KBr		
119.		a dilute solution a dilute solution a dilute solution anode is g		H ₂ SO ₄ is	s electro	olyzed	using Pt ele	ctrodes, th	ne product		
	A)	H ₂	B)	O_2		C)	SO_2	D)	SO_3		
120.	In ele	ectrogravimetric	analvs	is the a	nalvte i	s guant	itativelv der	osited as	a solid on		
	the	-	<i>J</i> ~		J	.	J -T				
	A)	Cathode			B)	Anod	e				
	Ć)	Cathode or an	ode		Ď)		de and anod	le			